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Abstract— Army vehicle software provides mission critical complex functions. It interacts with complex electronics from multiple 

vendors and has unique software interfaces. The software structure complexity is influenced by many factors prior to software 

development. Understanding, predicting and resolving complexity of vehicle software prior to its development is a necessity for 

army mission success. Current complexity metrics are historical data distribution dependent. It focuses on software and its 

technical structure with no consideration of its influencing factors. Non-technical metrics related to software complexity are 

required to address diverse skill set including the management. Using non-technical metrics prior to software development 

enables management to spend resources early to resolve issues faster. In this paper, the authors propose five non-technical 

factor metrics based on the current software development process to predict future Army vehicle software complexity. Factor 

analysis and fuzzy logic techniques are used for developing, modeling and analyzing the software complexity prediction metric. 

The proposed metric is independent of software, programming language, and domain. This metric is data distribution 

independent. 

Index Terms—Maintainability, Metrics/Measurements, Process metrics, Reliability 

——————————      —————————— 

1 INTRODUCTION 

1.1 Army Vehicles and its Software 

RMY is one of the military divisions specialized in 
land warfare. In a given war mission, the war zone 
is very hostile, the terrain is unknown and the Army 

has to perform several critical complex functions to defeat 
enemy forces. To carry out a mission, the Army uses 
many different types of vehicles including armored fight-
ing, medical, reconnaissance, fire support, and mortar 
carrying vehicles. These vehicles have multiple electronic 
devices, networks, and computing resources. The vehicles 
are built with tight security rules, multiple unique devices 
integration, multiple unique legacy software integration, 
strict performance requirements, involvement with hu-
man lives, and precision requirements.  
The vehicle on-board devices are from multiple vendors 
and have unique software interfaces. These devices inte-
ract with each others using a complex network. Besides 
interacting within a given vehicle, these devices have to 
communicate with other devices on other vehicles and 
commanding centers. The Army battle success depends 
on effective interoperable communications between these 
devices and its software.  

The Army vehicles’ devices are real-time and are con-
trolled by embedded operating systems. The Army ve-
hicle software on these devices is developed using Ada, 
Java, C, C++, and etc programming languages. The Army 
vehicles have software related to radios, communications, 
navigation, fighting, training, diagnostics, and etc. For the 
Army, the vehicle software is crucial and any complexity 

in it hinders the mission success. The Army software is 
developed under intense tight requirements using mul-
tiple vendors. The software has millions of lines of code. 
They are developed using many different programming 
languages and require efficient integration to minimize 
possible software complexity. The Army has to focus 
more on its vehicle software complexity than any other 
commercial software, because, the Army environment is 
dynamic and its requirements are changing frequently to 
meet mission needs. The complex software in an Army 
vehicle introduces many defects and makes it difficult to 
understand the software and correct the defects in a rela-
tively faster pace. The Army cannot afford to have defects 
in any critical functions. If the software cannot accommo-
date frequent changes in a faster way, the vehicles cannot 
perform its intended function and it is not acceptable to 
the Army.  

The software complexity is a major concern for any 
Army vehicle software to maintain its peak performance 
at all time. There is a bigger need for identifying metrics 
to predict the Army vehicle software complexity in very 
early stages of its development cycle. Many researchers 
have postmortem historical software and identified the 
reasons why a given software structure is complex, but, to 
our knowledge, no body has made an attempt to identify 
the Army vehicle software complexity contributing fac-
tors by inspecting the current software development 
process. Many researchers have defined several software 
complexity metrics but they all are historical technical 
data dependent and may not work in all software devel-
opment.  

The complexity is influenced by many factors prior to 
software development. Understanding, predicting and 
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resolving complexity of vehicle software prior to its de-
velopment is a necessity for Army mission success. In this 
paper we describe the proposed software complexity pre-
diction metric for Army vehicle software. 

1.2 Software Complexity 

Honglei et al [1] summarizes the software complexity 
definition as difficulty of understanding the program, 
difficulty of correcting the defects and maintaining the 
software, difficulty of explaining the software to other 
people, difficulty of updating the program according to 
some assigned rules, work load of writing programs ac-
cording to the design, and availability of necessary re-
sources when programs are executing. Kearney et al [2] 
defines software complexity as applying to the interaction 
between a program and a programmer working on some 
programming task. 

We define true software complexity as a combination of 
three main elements i.e. reliability, availability, and main-
tainability (RAM). There are many features that may be 
qualified as software complexity elements, but, from our 
experience the main complexity is truly a result of RAM. 
The definitions of RAM described in next few lines con-
firm that the software complexity is a combination of 
RAM. Reliability (R) is the probability of performing a 
required function under stated conditions for a specified 
period of time [3]. Availability (A) is a measure of the de-
gree to which software is in an operable state and can be 
committed at the start of a mission when called for at an 
unknown (random) point in time. Availability as meas-
ured by the user is a function of how often failures occur 
and corrective maintenance is required, how often pre-
ventative maintenance is performed, how quickly indi-
cated failures can be isolated and repaired, and how 
quickly preventive maintenance tasks can be performed 
[3]. Maintainability (M) is the ability of software to be 
retained in, or restored to, a specified condition when 
maintenance is performed by personnel having specified 
skill levels, using prescribed procedures and resources, at 
each prescribed level of maintenance and repair [3]. The 
software complexity influences a lot of software defects 
and introduces unknowns when it comes to fixing them. 
If the software is complex, its reliability is hard to achieve, 
due to this, the software may suffer availability issues. If 
the software is hard to understand, hard to fix defects, 
then the maintainability suffers. The bottom-line is, the 
RAM controls the entire software dependability, and 
without it the Army cannot perform its intended func-
tions. These arguments confirm that the software com-
plexity is really consisting of RAM elements.  

Many existing software complexity metrics are histori-
cal data distribution dependent and they focus only on 
software & its technical structure with no consideration of 
its influencing factors. These metrics provide unique 
software attributes to define complexity and they are 
programming language or industry specific. These com-
plexity metrics require skilled resources to understand, 
implement, and resolve complexity. Identifying complexi-
ty based on one source of software historical data and 
applying it to another may not work for all software. 

There are multiple factors which contribute to its complex 
structure. Management may not understand the technical 
complexity data obtained from the historical data. In 
many cases, the developers may not be skilled enough to 
understand this to implement a good solution. Convinc-
ing management to spend resources on resolving prob-
lems in the development phase just based on the technical 
complexity data is very hard. Many skilled developers 
and designers must be assigned to fix issues. This could 
be expensive and the problems may not be solved due to 
tight schedules and wrong historical data. Basing the de-
cisions on these metrics and attempting to reduce com-
plexity may work in some but not in all cases because the 
factors which contributed to complexity are still not ex-
amined. Historical data change when the contributing 
factors and the target software are changed. These metrics 
are complex mathematical formulations and need tools to 
find the elements proposed by these researchers to collect 
data from the historical complex software. These metrics 
may not be easily understood by all applicable parties. 
There is a need for non-technical metrics which are com-
mon to any software development and for any industry.  

The McCabe’s *4+ software complexity metrics are 
based on a software program’s control flow. It introduces 
the concept of Cyclomatic Complexity, where the number 
of flow graph edges, nodes and predicate nodes are com-
bined to represent the complexity. The Cyclomatic Com-
plexity of a source code is the linearly independent paths 
count through the source code. It is mathematically de-
fined as C = E - N +2P, where E = number of edges of the 
graph, N = number of nodes in the graph, and P = number 
of predicate nodes.  

The Halstead [5] software complexity metric provides 
the measure of software algorithm complexity. It meas-
ures the complexity by counting number of operators and 
operands in software. It measures the software's ability to 
understand and estimates the effort required to develop a 
software algorithm. It also indicates the amount of time to 
implement an algorithm. Halstead metrics are difficult to 
calculate and it is very hard to count the distinct and total 
operators and operands in a software program. 

The Henry and Kafura [6] software complexity metric 
provides the measure of couplings between modules in 
terms of number of parameters, global variables and func-
tion calls. It measures given software’s procedure, module 
and interfaces. Henry and Kafura believe that measure-
ment of software quality for large scale systems using 
information flow to represent the system interconnectivi-
ty is an important visible technique. 

The Entropy based software complexity measure [7] is 
based on the average information content of each opera-
tor in a software program's source code. 

The Cognitive weights software complexity metrics [8] 
from Jingqiu Shao and Yingxu Wang models the software 
complexity based on the cognitive functional size of the 
software. The cognitive functionalize provides a founda-
tion for cross-platform analysis of complexities, sizes and 
comprehension effort of software specifications in various 
design phases. 

The Relative complexity metrics [9] represents a single, 
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unified measure on the structure of a software program. It 
serves to classify a set of software programs in order of 
their increasing complexity in relation to each other. 

The [4], [5], [6], [7], [8], and [9] metrics discussed earlier 
are too technical and focus only on technical structure of a 
software program. These data are hard to compute and 
requires many skilled resources to understand and im-
plement solutions. 

Above arguments lead to a conclusion that we need 
metrics captured from the current software development 
process documents rather than the software itself. These 
metrics must be easily understood by both the technical 
and non- technical resources. These metrics can be used 
to measure the current software development process 
elements and predict the future software complexity. If 
the software complexity is predicted early enough in the 
software planning lifecycle, the complexity can be ma-
naged through many preventive measures such as revisit-
ing the requirements, restructuring the development 
team, scheduling for reviews, modifying the testing strat-
egy, etc. With early prediction, less effort can be put into 
the software development and restructuring the executing 
plan. If the complexity is predicted using the factors 
which are available from the beginning of a software de-
velopment program, it makes it easy for the management 
to visualize and act fast. 

We describe the proposed software complexity predic-

tion metric in the following sections. 

1) The prediction metric development - using factor anal-
ysis 
2) The prediction algorithm - using fuzzy logic 
3) The prediction model development - using fuzzy logic  

2 THE PREDICTION METRIC DEVELOPMENT 

2.1 Metric Development 

The following ten non-technical variables are extracted 

from the Army vehicle software development project 

plan, development strategy, test strategy, technology 

strategy, and requirements analysis documents.  

1) Technical readiness level (TRL) 
2) Number of planned skilled resources (PSR) 
3) Number of planned code reviews (PCR) 
4) Number of planned design reviews (PDR) 
5) Number of planned architecture reviews (PAR) 
6) Number of planned integration reviews (PIR) 
7) Number of planned design documents (PDC) 
8) Number of planned test case documents (PTD) 
9) Number of planned configuration management tasks 
(CM) 
10) Number of open requirements (OR) 
In an Army vehicle software development process, cha-
racteristics of these variables influence schedules, number 
of defects, cost, number of modules, use of best practices, 
etc. Issues from these variables compounds and results in 
a complex software structure which is responsible for a 
less reliable and available, and hard to maintain software. 
The above list of multiple dimensions with many mutual-
ly correlated variables is reduced to a smaller set of un-

correlated variables with conceptual indices to measure 
similar factors. Dr. Deok H Nam et al [10] data reduction 
technique reduces the data in both the rows and columns. 
This technique reduces dataset based on the historical 
data distribution and is applicable when the measure-
ment variables have no impact on the reduced data set. 
For the proposed metrics development, too much data 
reduction produces bad results. 

The factor analysis technique is applied to reduce a 
multitude of measurable variables to smaller manageable 
factors. The factor analysis extracts factors from a sample 
of data collection (observations) where variables are dis-
tributed in a consistent manner, e.g. code review is related 
to the number of defects in a software test, because, code 
with higher reviews produces fewer defects. 

 
A factor analysis function was applied to 24 Army ve-

hicle software development projects data (see Fig. 10) to 
produce a covariance output using the principle compo-
nent analysis, Varimax rotation and the Kaiser criterion. 
The covariance was observed to capture common concep-
tual indexes from the factor analysis output. Five factors 
from the ten mutually correlated variables were extracted. 
The Kaiser criterion retains only factors with eigenvalues 
greater than 1.0. The eigenvalues are the variance of the 
extracted factors. The Eigen-value for a given factor 
measures the variance in all the variables which is ac-
counted for by that factor. TABLE 1 lists the factor analy-
sis output from the analysis tool.  Ten variables with a 
variance of one for each transform to a total extracted va-
riability of 10 (10*1). From TABLE 2, it is clear that all fac-
tor’s Eigen-values are over one and five extracted factors 
show 85% of the variances from ten variables. This reduc-
tion emphasizes that fewer variables in the selected pool 

TABLE 1 
ROTATED FACTOR LOADINGS 

Variables F1 F2 F3 F4 F5 

TRL -0.062 -0.034 -0.940 -0.002 0.048 

PSR 0.604 0.405 -0.463 0.281 0.132 

PCR 0.393 0.103 0.492 -0.716 0.007 

PDR 0.026 0.896 0.268 0.154 0.124 

PAR 0.275 0.390 0.180 0.812 0.133 

PIR 0.707 0.455 -0.130 -0.203 -0.127 

PDC - 0.108 0.022 -0.053 0.072 0.978 

PTD 0.232 0.731 -0.286 0.082 -0.096 

CM 0.875 -0.077 0.123 0.030 -0.157 

OR 0.674 0.510 0.315 0.121 0.108 

 

 TABLE 2 
EIGENVALUES (VARIANCE) 

Factors Eigenvalue 

F1 2.383 

F2 2.138 

F3 1.661 

F4 1.343 

F5 1.071 

Communality 8.595 
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could be conceptually connected to achieve the intended 
function. 

Statistics is a mathematical formulation based on a past 
data distribution snapshot and may not be a future pre-
dictor. The environment is dynamically changing with 
time and might pose a different situation. In the our’s and 
other researcher’s experience, historical data factor analy-
sis cannot solve the reduction problem in all cases. This 
has to be integrated with human skills in interpreting and 
identifying the correct common indexes. 

Per TABLE 1 (gray highlighted text), PCR, PDR, PAR, 
PDC, and CM show higher covariance among other va-
riables. If one were to choose purely on this analysis, it 
would be badly judged, as PCR, PDR, and PAR can be 
linked to a single factor. In addition to analysis data and 
our experience dealing with software, the proposed soft-
ware complexity prediction factors are listed in TABLE 3. 
F1 can consist of PCR, PDR, PAR, PIR and PSR. F2 can 
consist of PDC & PTD. F3 can consist of TRL which plays 
a big role in any software development. F4 can consist of 
OR alone because ORs create a greater impact on any 
software development.  F5 can consist of CM alone be-
cause CM is very important in making sure the developed 
software is properly controlled and configured. 

Based on the earlier discussions, we propose the follow-
ing five factors metric to predict software complexity. 
1) Technical readiness level (TRL) 
2) Number of open requirements (OR) 
3) Number of planned technical reviews (TR) 
4) Number of planned documentation tasks (DOC) 
5) Number of planned configuration management tasks 
(CM) 

As previously stated, the true software complexity is a 
combination of R, A, and M. The DOD’s RAM guide [3] 
defines RAM essentialness to military systems and soft-
ware and describes various affecting factors. Subsequent 
paragraphs describe the proposed metric elements and its 
association with R, A, and M.  

For predicting the Army vehicle software complexity, all 
the five factors must be considered because the combina-
tion of factors predicts R, A, and M component of the 
software complexity as shown below. 
1) TRL, TR, and OR factors predict reliability.  
2) TRL and TR factors predict availability.  
3) DOC and CM factors to predict maintainability.  

2.2 Metric Elements 

Technology readiness level (TRL)  

      The TRL measures evolving technologies maturity 
prior to its implementation. The readiness is indicated by 
1 to 9 levels.  
TRL1) Basic principles observed and reported 
TRL2) Technology concept and/or application formulated 
TRL3) Analytical and experimental critical function 
and/or characteristic proof of concept 
TRL4) Breadboard validation in laboratory environment 
TRL5)  Breadboard validation in relevant environment 
TRL6) Model or prototype demonstration in a relevant 
environment 
TRL7) Prototype demonstration in an operational envi-

ronment 
TRL8) Actual system completed and 'flight qualified' 
through test and demonstration 
TRL9) Actual system 'flight proven' 
A technology with a lower TRL contributes to frequent 
failures when the software is developed. This creates low-
er mean time between failures (MTBF), increased down-
time, lower meantime between repairs (MTBR), etc. When 
the TRL level is more than six it is considered mature 
enough to provide good reliable software. Higher MTBF 
indicates more reliable software and decreased down-

time. Lower MTBR reduces the availability of software to 
perform intended functions. Careful analysis must be 
performed before a given technology is chosen to satisfy a 
given Army vehicle software requirement. More re-
sources and efforts are needed to make lower TRL tech-
nology work and it cause a lot of problems. The TRL is a 
very good indicator of future R & A of given software. 

Number of open requirements (OR) 

Open requirements have issues & unanswered ques-
tions. Unknown clarity on the requirements contributes to 
misunderstood requirements, increased redesigns, missed 
schedules, skipped technical documentation, cutting de-
sign corners, un-maintainable complex modules suscepti-
ble to higher failures and defects, etc. These characteris-
tics jeopardize the reliability of future Army vehicle soft-
ware. 

Number of planned technical reviews (TR) 

Technical reviews are performed during software de-
velopment, design, and test phases to find problems soon. 
If the Army vehicle software development has planned 
for relatively fewer required technical reviews, it will be 
hard to find the problems in the code, design, test cases, 
and architecture. Fewer planned technical reviews in-
creases rework, redesign, bad coding practices, failures, 
defects, etc. The technical reviews consist of code, design, 
architecture, and integration reviews. These are designed 
to help software recover from possible future errors or 
defects or downtime.  Lack of these planned reviews is a 
very good indicator of future R & A of Army vehicle soft-
ware. 

Number of planned documentation (DOC) 

Tasks for creating technical documents are a must re-
quirement for software development. The higher the 
number of documentation tasks scheduled for complex 
functionality the lower the data integrity, information 
assurance, interoperability, operational, maintenance, 

TABLE 3 
PROPOSED PREDICTION METRIC 

Factors Named Factor 

F1 Number of planned technical reviews (TR) 

F2 Number of planned documentation tasks (DOC) 

F3 Technical readiness review (TRL) 

F4 Number of open requirements (OR) 

F5 Number of planned configuration management tasks 

(CM) 
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testing, and rework issues. Documentation includes code, 
design, architecture, test cases, and requirements in order 
to reduce future unknowns and maintenance issues. This 
is a very good indicator of future M of Army vehicle 
software.  

 

Configuration management (CM) 

Configuration management for software is vital to the 
success of Army vehicle software. CM allows all parts 
and versions of software to be properly integrated and 
documented. A greater number of configuration man-
agement tasks scheduled for complex functionality re-
duce information assurance, interoperability, operational, 
maintenance, and testing issues, as well as MTBF, MTBR, 
MTTR, system downtime. CM tasks such as source and 
documentation control, release schedules, etc contributes 
to a reduced logistics and maintenance footprint. This is a 
very good indicator of future M of Army vehicle soft-
ware. 

3 THE SOFTWARE COMPLEXITY PREDICTION 

ALGORITHM 

Software complexity prediction using a number of inputs 
is tricky and is not always precise. Many mathematicians 
tend to apply complex math to derive expressions to ob-
tain near accurate results. The software development 
planning resources consist of both technical and non-
technical personnel, and the software discipline needs 
simpler methods and tools to evaluate complex pheno-
mena such as software complexity during the planning 
phase. For this situation, fuzzy logic solution offers great 
advantages to solve complex problems using a number of 
inputs. Fuzzy logic [11] proposed by L. A. Zadeh has been 
used where uncertainty and no mathematical relations 
exists.  Software complexity research area is vast and very 
hard to predict or analyze with the limited amount of 
measurable data. Empirical studies consume time and 
produce lower fidelity results. Fuzzy logic provides rule 
based approaches to solve a given problem using simple 
steps. We propose the following Army vehicle software 
complexity prediction algorithm using fuzzy logic (see 
Fig.1 for algorithm flow chart). 

 

Step1: Read String array inputs S = {Software 1…. Software 

N} for predicting software complexity; 

Step2: for i=1 to N (for each software) 

// refer section 2 for the details of TRL, TR, OR, DOC, and CM  

N (1) = collect TRL number from the technology 

            strategy document for software (i); 

 N (2) = calculate number of planned technical reviews 

                         (TR) from the project plan for software (i); 

N (3) = calculate number of open requirements (OR) 

           from the requirements analysis document for 

          software (i); 

N (4) = calculate number of planned documentation 

tasks (DOC) from the project plan for soft   

ware (i); 

N (5) = calculate number of planned configuration 

management tasks (CM) from the project plan for 

software (i); 

M (i) = N; (Store N array for software (i) in M array). 

         end for 

Step3: Read integer inputs array from M array;  

 // refer section 4 for fuzzy rules details. 

Step4: Store Fuzzy rules in array X = {rule1.... rule15};  

Step5: for i = 1 to N // Loop for computing software complexity 

for each software 

 W = M(i)  //get the ith element from W array 

 for j=1 to 5  

     Y(i) = fuzzify (W(i));  

             end for  

Step6:   for i = 1 to 15  

                if i <=11 then  

                  Z(i) = apply fuzzyrule(X(i)) on Y(1) & Y(2) & Y(3);  

                else  

                    Z(i) = apply fuzzyrule(X(i)) on Y(4) & Y(5);  

                   end if  

            end for  

Step7: Compute Reliability, R = centroid De-fuzzufication of  

            Z(1) to Z(11);  

           Compute Availability, A = centroid De-fuzzufication of  

           Z(1) to Z(10);  

          Compute Maintainability, M = centroid De-fuzzufication 

           of Z(12) to Z(15);  

Step8: Predict Software complexity from R, A, and M values 
      end for   // ends for loop for each software in a software ar-
ray M. 
 

Fuzzification [11] is a process of transforming crisp in-
put values into grades of membership for linguistic terms 
of fuzzy sets. De-fuzzification is a process of producing a 
quantifiable result in fuzzy logic, given fuzzy sets and 
corresponding membership degrees. A fuzzy set is a class 
of objects with various grades of membership under al-
most any condition which can assign a value in between 
zero and one, in other words, a fuzzy set is a pair (A,m) 
where A is a set and m: A [0,1]. Degree of membership 
is the grade displacement for the zero to one range in a 
fuzzy set. A fuzzy number is a convex, normalized fuzzy 
set  whose membership function is at least continuous 
and has the functional value μA(x) = 1 at one element. 
Fuzzy sets and membership functions are defined ma-
thematically using the following definition.  If X is a col-
lection of objects denoted by z, then a fuzzy set A in X is 
defined as a set of ordered pairs: 

 
A = {(x, µA(x)) | x ϵ  X}    (1) 
 

µA(x) is called the membership function (MF) of x in A. 
The MF maps each element of X to a continuous member-
ship value (or membership grade) between zero and one. 
 
 
 

http://en.wikipedia.org/wiki/Fuzzy_logic
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4 THE SOFTWARE COMPLEXITY PREDICTION MODEL 

We propose a fuzzy logic based Army vehicle software 
complexity prediction model using the proposed five fac-
tors metrics. The software fuzzy logic toolbox was used to 
develop the model. The TABLE 4 lists the fuzzy variables 
and its mapping with the proposed metric elements. 

The prediction model has three components i.e. fuzzifi-
cation, rule-based fuzzy inference engine, and de-
fuzzification. The model consists of five inputs, three out-
puts and 15 rules. According to the predefined rules, the 
model predicts the appropriate software complexity in 
terms of RAM.  Both the fuzzy inputs and outputs are 
modeled using the trapezoidal membership functions. 
The membership grades for TRL are described by LOW, 
MEDIUM, and HIGH membership functions (see Fig. 5) 
and all other the fuzzy inputs are described by NOTH-
ING, SOME and FULL membership functions (See Fig. 4). 
The fuzzy output’s membership grades are described by 
RED, YELLOW, and GREEN membership functions (See 
Fig. 6).  

Fig.2 describes the typical characteristics of a trapezoid-
al membership function.  The core of a normal fuzzy set A 
is the crisp set that contains all the elements of X that have 
the membership grades of one in, A i.e. 
 

Core (A) = {x ϵ  X | µA(x) =1}   (2) 

 
The boundary is the crisp set that contains all the ele-
ments of X that have the membership grades of x < µA(x) < 
1 in A.  Fig. 3 shows the trapezoidal function details.  
    For all the fuzzy inputs and outputs, the core (A) is de-
fined as follows: 
 
Set A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 
Support (LOW) = Support (RED) = {0, 1, 2, 3} 
Core (LOW) = Core (RED) = {1, 2} 
Support (MEDIUM) = Support (YELLOW) = {2, 3, 4, 5, 6} 
Core (MEDIUM) = Core (YELLOW) = {3, 4, 5} 
Support (HIGH) = Support (GREEN) = {5, 6, 7, 8, 9} 
Core (HIGH) = Core (GREEN) = {6, 7, 8, 9} 
 

The fuzzy logic toolbox provides a rule-based model as 
a software prototype to analyze all the inputs and com-
pute the output. The de-fuzzification rules are based on 
the proposed five factors metrics. The list below shows 
the 15 fuzzy rules to predict the software complexity us-
ing five inputs and three outputs. 

 
1)  If TRL= LOW & TR = NOTHING & OR =NOTHING then 
R = RED & A = RED 
2)  If TRL= LOW & TR = SOME & OR = NOTHING then R = 
RED & A = RED 
3) If TRL = LOW & TR=FULL & OR=NOTHING then 
R=RED & A=YELLOW 
4) If TRL=MEDIUM & TR=NOTHING & OR=NOTHING 
then R=RED & A=YELLOW 
5) If TRL=MEDIUM & TR=SOME & OR=NOTHING then 
R=RED & A=YELLOW 
6) If TRL=MEDIUM & TR=FULL & OR=NOTHING then 
R=YELLOW & A=YELLOW 
7) If TRL=HIGH & TR=NOTHING & OR=NOTHING then 
R=RED & A=YELLOW 
8) If TRL=HIGH & TR=SOME & OR=NOTHING then 
R=YELLOW & A=YELLOW 
9) If TRL=HIGH & TR=FULL & OR=NOTHING then 
R=GREEN & A=GREEN 
10) If OR=SOME then R=YELLOW 
11) If OR=FULL then R=RED 
12) If DOC=NOTHING || CM=NOTHING then M=RED 
13) If DOC=SOME & CM=SOME then M=YELLOW 
14) If DOC=SOME & CM=FULL then M=YELLOW 
15) If DOC=FULL & CM=FULL then M=GREEN 
 
R in the RED membership grades indicates that the relia-
bility component of the Army vehicle software complexi-
ty is in trouble and needs significant improvements in 
“TRL” or “TR” or “OR”. A in the RED membership 
grades indicates that the availability component of the 
Army vehicle software complexity is in trouble and needs 
significant improvements in “TRL” or “TR” factors. Simi-
larly, M in the RED membership grades indicates that the 
maintainability component of the Army vehicle software 
complexity is in trouble and needs improvements in 
“CM” or “DOC” factors. The output values of YELLOW 
indicate that some improvements are needed for the asso-
ciated factors. The output values of GREEN indicate no 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Software complexity prediction algorithm flowchart 
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improvements needed for the associated factors. The Fig. 
8 describes the model elements. 
    The fuzzification model element fuzzifies the model 
inputs via a max function evaluation based on the mem-
bership functions defined to determine its appropriate 
membership grades. Fig. 7 shows the fuzzified input val-
ue of 2.8 as an example of fuzzification process. 

In this model, when the inputs and outputs are fuzzi-
fied, the max function is applied between the membership 
functions. Per Fig. 7, the value of 2.8 falls into two mem-
bership functions i.e. LOW (0.4) and MEDIUM (0.8), but 
when max function is applied between them, the mem-
bership grade falls into MEDIUM membership function. 
The fuzzified value is 0.8 for an input of 2.8. In this mod-
el, when the results are de-fuzzied, they use the centroid 
method of de-fuzzification. This process returns the cen-
ter area of the curve (see Fig. 9). 

 

5 VALIDATION AND EXAMPLE 

Let’s explain the Army vehicle software complexity pre-
diction model using the simple example. The following 
are the example data: TRL = 5, TR=4, OR=1, DOC=3 and 
CM=4. 

Per the software complexity prediction algorithm (see 
Section III), all the above five inputs are fuzzified using 
the max function. The fuzzified input values are TRL = 1 
(MEDIUM), TR = 1 (SOME), OR = 1 (NOTHING), DOC = 1 
(SOME), CM = 1 (SOME). 

Now the above fuzzified inputs are tested by 15 fuzzy 
rules (see Section IV). Per rule#5, If TRL=MEDIUM & 
TR=SOME & OR=NOTHING then R=RED & A=YELLOW. 
Per rule#13, If DOC=SOME & CM=SOME then 
M=YELLOW  From the two fuzzy rules #5 & #13, software 
complexity can be predicted. The results indicate that the 
reliability part of the software complexity as RED (crisp 
values between 0 & 3). Availability part of the software 
complexity is YELLOW (crisp values between 2 & 6). The 
maintainability part of the software complexity is YEL-
LOW (crisp values between 2 & 6). The software fuzzy 
logic toolbox can be used to simulate five factors metric 
input to determine fuzzy outputs and the appropriate de-
fuzzified values. Depending on the output membership 
grades appropriate fuzzy value for the output can be de-

termined from the fuzzy logic toolbox output. 

6    CONCLUSION 

Many existing software complexity metrics are histori-
cal data distribution dependent and focus only on 
software & its technical structure with no considera-
tion of influencing factors for complex software struc-
ture. These metrics are too technical and requires 
skilled resources to understand and implement solu-
tions to fix the software complexity. Identifying com-
plexity based on one source of software historical data 
and applying it to another may not work for all soft-
ware. Management may not understand the too tech-
nical complexity data obtained from the historical da-
ta. These types of metrics historical software data 
based and focus on fixing the symptoms rather than 
the problem.  

The proposed software complexity metric fills this 
gap by providing non-technical variables (factors) to 
predict the Army vehicle software complexity. The 
proposed metric elements are known to all parties in-
volved in a software development project and the me-
tric data collection is simple. The data can be captured 
from the software development project plan, develop-
ment strategy, test strategy, technology strategy, and 
requirements analysis documents. In an Army vehicle 
software development process, characteristics of these 
factors influence schedules, number of defects, cost, 
number of modules, use of best practices, etc. Issues 
from these variables compounds and results in a com-
plex software structure which is responsible for a less 
reliable and available, and hard to maintain software. 
The proposed metric is independent of software, pro-
gramming language, and domain. This metric is inde-
pendent of data distribution and is suitable for any 
software development. This provides complexity in-
formation very early in the development cycle and al-
lows applicable personnel to take actions immediately 
and resolve the issue before it happens. This metric 
does not require any technical solution fix the future 
software complexity and does not require skilled tech-
nical people. The resources involved in the project 
planning phase can easily understand software predic-
tion output and restructure the proposed metric ele-
ments in the appropriate documents to resolve future 
software complexity problems. The true software com-
plexity has three main elements i.e. reliability, availa-
bility, and maintainability. 

The factor analysis data reduction technique, along 
with human logical analysis can be used to extract 
smaller uncorrelated factors from mutually correlated 
variables. Fuzzy techniques produce satisfactory re-
sults with very minimal effort compared to mathemat-
ical formulations. The input data distribution and the 
rule driven output values are analyzed using the fuzzy 
logic tool box which serves as a software prototype. 
Custom software can be developed to interact with the 
fuzzy logic toolbox to provide input and extract the 
fuzzy inference engine output for visualization.  

TABLE 4 
FUZZY VARIABLES 

Fuzzy Va-

riables 

Fuzzy In-

put/output 

Associated prediction metric 

TRL Input TRL 

TR Input Technical Reviews (TR) 

DOC Input Documentation (DOC) 

CM Input Configuration management 

(CM) 

OR Input Open requirements (OR) 

R Output Reliability (R) 

A Output Availability (A) 

M Output Maintainability (M) 
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When complexity is expressed in terms of RAM, the 
user can visualize which part of the complexity is hav-
ing problems e.g. if R = YELLOW, A = GREEN, and M = 
RED then we can say the reliability and maintainability 
part of the software complexity is in trouble. To fix this 
problem, we need to adjust the factors responsible for 
them.  By looking at the current data for TRL and TR, 
we can determine the gap and take the necessary ac-
tions for fixing the reliability issue as these three fac-
tors contribute the most for the reliability parts of the 
software complexity. The DOC & CM data can be used 
to determine the gap for maintainability and to take 
action.  

The proposed software complexity prediction me-
chanism using five non-technical factors and three 
outputs is a novel technique. Historical RAM data are 
not available to compare the results. Based on our ex-
perience, these factors truly contribute to RAM.  
This proposal opens up software complexity research 
gates to produce more simplified non-technical factors 
to predict software complexity using multiple inputs 
and outputs. 
 
 
 

 

 
 
 
 
 
 
 

 

 

 

 
 
 
 
 
 
 

 

Fig. 5. Fuzzy input membership functions for TRL. This figure de-
scribes the three membership functions LOW, MEDIUM, and HIGH for 
TRL crisp input.  

 
 
 
 
 
 
 

 

 

Fig. 6. Fuzzy output membership functions for R, A, and M. This figure 
describes the three membership functions RED, YELLOW, and 
GREEN for R, A, and M outputs.  

 
 
 
 
 
 
 

 

Fig. 7. Fuzzified input for an example of 2.8 crisp input. 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Characteristics of trapezoidal membership function. This figure 
depicts the boundary, core, and support elements of a trapezoidal 
membership function.  

 

 
 
 
 
 
 
Fig. 3. Trapezoidal function details. This figure describes the trape-
zoidal function behavior for the crisp inputs.  

 
 
 
 
 
 
 

 

 
Fig. 4. Fuzzy input membership functions for TR, OR, CM, and DOC. 
This figure describes the three membership functions NOTHING, 
SOME, and FULL for TR, OR, CM, and DOC crisp input.  
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Fig.8. Army vehicle software complexity prediction model. This figure 
describes the Army vehicle software complexity prediction model.  

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Fig. 10. Army vehicle software metric data from various documents 

 
 
 
 
 
 
 

 

 

Fig.9. Centroid   de-fuzzification. Courtesy: http://www.mathworks.com 
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